Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
J Allergy Clin Immunol ; 150(3): 594-603.e2, 2022 09.
Article in English | MEDLINE | ID: covidwho-2179904

ABSTRACT

BACKGROUND: Lymphopenia is predictive of survival in patients with coronavirus disease 2019 (COVID-19). OBJECTIVE: The aim of this study was to understand the cause of the lymphocyte count drop in severe forms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: Monocytic production of reactive oxygen species (ROSs) and T-cell apoptosis were measured by flow cytometry, DNA damage in PBMCs was measured by immunofluorescence, and angiotensin II (AngII) was measured by ELISA in patients infected with SARS-CoV-2 at admission to an intensive care unit (ICU) (n = 29) or not admitted to an ICU (n = 29) and in age- and sex-matched healthy controls. RESULTS: We showed that the monocytes of certain patients with COVID-19 spontaneously released ROSs able to induce DNA damage and apoptosis in neighboring cells. Of note, high ROS production was predictive of death in ICU patients. Accordingly, in most patients, we observed the presence of DNA damage in up to 50% of their PBMCs and T-cell apoptosis. Moreover, the intensity of this DNA damage was linked to lymphopenia. SARS-CoV-2 is known to induce the internalization of its receptor, angiotensin-converting enzyme 2, which is a protease capable of catabolizing AngII. Accordingly, in certain patients with COVID-19 we observed high plasma levels of AngII. When looking for the stimulus responsible for their monocytic ROS production, we revealed that AngII triggers ROS production by monocytes via angiotensin receptor I. ROSs released by AngII-activated monocytes induced DNA damage and apoptosis in neighboring lymphocytes. CONCLUSION: We conclude that T-cell apoptosis provoked via DNA damage due to the release of monocytic ROSs could play a major role in COVID-19 pathogenesis.


Subject(s)
Angiotensin II , COVID-19 , Lymphopenia , Angiotensin II/blood , Apoptosis , COVID-19/diagnosis , COVID-19/pathology , DNA Damage , Humans , Reactive Oxygen Species , SARS-CoV-2 , T-Lymphocytes
2.
Ther Adv Respir Dis ; 16: 17534666221122544, 2022.
Article in English | MEDLINE | ID: covidwho-2021056

ABSTRACT

BACKGROUND: Information about angiotensin II (Ang II), angiotensin-converting enzyme 2 (ACE2), and Ang-(1-7) levels in patients with COVID-19 is scarce. OBJECTIVE: To characterize the Ang II-ACE2-Ang-(1-7) axis in patients with SARS-CoV-2 infection to understand its role in pathogenesis and prognosis. METHODS: Patients greater than 18 years diagnosed with COVID-19, based on clinical findings and positive RT-PCR test, who required hospitalization and treatment were included. We compared Ang II, aldosterone, Ang-(1-7), and Ang-(1-9) concentrations and ACE2 concentration and activity between COVID-19 patients and historic controls. We compared baseline demographics, laboratory results (enzyme, peptide, and inflammatory marker levels), and outcome (patients who survived versus those who died). RESULTS: Serum from 74 patients [age: 58 (48-67.2) years; 68% men] with moderate (20%) or severe (80%) COVID-19 were analyzed. During 13 (10-21) days of hospitalization, 25 patients died from COVID-19 and 49 patients survived. Compared with controls, Ang II concentration was higher and Ang-(1-7) concentration was lower, despite significantly higher ACE2 activity in patients. Ang II concentration was higher and Ang-(1-7) concentration was lower in patients who died. The Ang II/Ang-(1-7) ratio was significantly higher in patients who died. In multivariate analysis, Ang II/Ang-(1-7) ratio greater than 3.45 (OR = 5.87) and lymphocyte count ⩽0.65 × 103/µl (OR = 8.43) were independent predictors of mortality from COVID-19. CONCLUSION: In patients with severe SARS-CoV-2 infection, imbalance in the Ang II-ACE2-Ang-(1-7) axis may reflect deleterious effects of Ang II and may indicate a worse outcome.


Subject(s)
Angiotensin II , Angiotensin I , Angiotensin-Converting Enzyme 2 , COVID-19 , Angiotensin I/blood , Angiotensin I/chemistry , Angiotensin II/blood , Angiotensin II/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , COVID-19/diagnosis , COVID-19/mortality , Female , Humans , Male , Middle Aged , Peptide Fragments , Peptidyl-Dipeptidase A , Prognosis , SARS-CoV-2
3.
Hypertension ; 79(2): 365-378, 2022 02.
Article in English | MEDLINE | ID: covidwho-1541968

ABSTRACT

ACE (angiotensin-converting enzyme)-2 as the target for SARS-CoV-2 also negatively regulates the renin-angiotensin system. Pathological activation of ADAM17 (A disintegrin and metalloproteinase-17) may potentiate inflammation and diminish ACE2-mediated tissue protection through proteolytic shedding, contributing to SARS-CoV-2 pathogenesis. We aim to examine plasma soluble ACE2 and angiotensin profiles in relation to outcomes by enrolling consecutive patients admitted for COVID-19 with baseline blood collection at admission and repeated sampling at 7 days. The primary outcome was 90-day mortality, and secondary outcomes were the incidence of end-organ injuries. Overall, 242 patients were included, the median age was 63 (52-74) years, 155 (64.0%) were men, and 57 (23.6%) patients reached the primary end point. Baseline soluble ACE2 was elevated in COVID-19 but was not associated with disease severity or mortality. In contrast, an upward trajectory of soluble ACE2 at repeat sampling was independently associated with an elevated risk of mortality and incidence of acute myocardial injury and circulatory shock. Similarly, an increase in soluble tumor necrosis factor receptor levels was also associated with adverse outcomes. Plasma Ang I, Ang 1-7 (angiotensin 1-7) levels, and the Ang 1-7/Ang II (angiotensin II) ratio were elevated during SARS-CoV-2 infection related to downregulation of ACE activity at baseline. Moreover, patients having an upward trajectory of soluble ACE2 were characterized by an imbalance in the Ang 1-7/Ang II ratio. The observed dysregulation of ACE2 and angiotensin peptides with disease progression suggest a potential role of ADAM17 inhibition and enhancing the beneficial Ang 1-7/Mas axis to improve outcomes against SARS-CoV-2 infection.


Subject(s)
Angiotensin II/blood , Angiotensin I/blood , Angiotensin-Converting Enzyme 2/blood , COVID-19/blood , Peptide Fragments/blood , Renin-Angiotensin System/physiology , SARS-CoV-2 , ADAM17 Protein/blood , Aged , COVID-19/mortality , COVID-19/therapy , Enzyme Activation , Female , Follow-Up Studies , Humans , Male , Middle Aged , Prognosis , Prospective Studies , Receptors, Tumor Necrosis Factor, Type I/blood , Receptors, Tumor Necrosis Factor, Type II/blood , Respiration, Artificial , Risk , Treatment Outcome
4.
Biomark Med ; 15(17): 1581-1588, 2021 12.
Article in English | MEDLINE | ID: covidwho-1496869

ABSTRACT

Introduction: SARS-CoV-2 requires angiotensin-converting enzyme 2 (ACE2) to enter the cell. In our study, we aimed to investigate the role of angiotensin-converting enzyme 2 and angiotensin II plasma levels on prognosis and mortality in patients with isolated hypertension, patients with chronic diseases in addition to hypertension and patients with COVID-19 without comorbidities, in accordance with the use of renin-angiotensin-aldosterone system inhibitor. Materials & methods: In the study, patients diagnosed with COVID-19 were divided into three groups. Angiotensin II and ACE2 levels were compared by comorbidities, antihypertensive drugs used, intensive care hospitalization and termination of patients. The relationship between angiotensin II and ACE2 levels and service and intensive care times was investigated. Findings: A total of 218 patients were enrolled in our study, including 68 patients diagnosed with COVID-19 without comorbidities, 33 patients diagnosed with isolated hypertension and 117 patients with other chronic diseases in addition to hypertension. There was no statistically significant difference between the comorbid disease groups between angiotensin II and ACE2 levels of the patients enrolled in the study. The rate of patients admitted to the intensive care unit was 17.9%, and the mortality rate was 11.5%. Results: In our study, we did not obtain significant findings regarding angiotensin II and ACE2 levels on presentation that can be used in prognosis and mortality of COVID-19 patients and development of future treatment methods.


Subject(s)
Angiotensin II/blood , Angiotensin-Converting Enzyme 2/blood , COVID-19 , Hypertension , SARS-CoV-2/metabolism , Adult , Aged , Aged, 80 and over , COVID-19/blood , COVID-19/mortality , Disease-Free Survival , Female , Humans , Hypertension/blood , Hypertension/mortality , Male , Middle Aged , Prospective Studies , Survival Rate
5.
PLoS One ; 16(9): e0257016, 2021.
Article in English | MEDLINE | ID: covidwho-1484849

ABSTRACT

BACKGROUND: Activation of the immune system is implicated in the Post-Acute Sequelae after SARS-CoV-2 infection (PASC) but the mechanisms remain unknown. Angiotensin-converting enzyme 2 (ACE2) cleaves angiotensin II (Ang II) resulting in decreased activation of the AT1 receptor and decreased immune system activation. We hypothesized that autoantibodies against ACE2 may develop after SARS-CoV-2 infection, as anti-idiotypic antibodies to anti-spike protein antibodies. METHODS AND FINDINGS: We tested plasma or serum for ACE2 antibodies in 67 patients with known SARS-CoV-2 infection and 13 with no history of infection. None of the 13 patients without history of SARS-CoV-2 infection and 1 of the 20 outpatients that had a positive PCR test for SARS-CoV-2 had levels of ACE2 antibodies above the cutoff threshold. In contrast, 26/32 (81%) in the convalescent group and 14/15 (93%) of patients acutely hospitalized had detectable ACE2 antibodies. Plasma from patients with antibodies against ACE2 had less soluble ACE2 activity in plasma but similar amounts of ACE2 protein compared to patients without ACE2 antibodies. We measured the capacity of the samples to inhibit ACE2 enzyme activity. Addition of plasma from patients with ACE2 antibodies led to decreased activity of an exogenous preparation of ACE2 compared to patients that did not have antibodies. CONCLUSIONS: Many patients with a history of SARS-CoV-2 infection have antibodies specific for ACE2. Patients with ACE2 antibodies have lower activity of soluble ACE2 in plasma. Plasma from these patients also inhibits exogenous ACE2 activity. These findings are consistent with the hypothesis that ACE2 antibodies develop after SARS-CoV-2 infection and decrease ACE2 activity. This could lead to an increase in the abundance of Ang II, which causes a proinflammatory state that triggers symptoms of PASC.


Subject(s)
Autoantibodies/blood , COVID-19/immunology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/blood , Angiotensin II/blood , Angiotensin II/immunology , Angiotensin-Converting Enzyme 2/genetics , Autoantibodies/immunology , Autoantibodies/isolation & purification , COVID-19/blood , COVID-19/virology , Female , Humans , Male , Peptidyl-Dipeptidase A/blood , Receptor, Angiotensin, Type 1/blood , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/immunology , Renin-Angiotensin System/genetics , Renin-Angiotensin System/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/isolation & purification
6.
Biotechnol Prog ; 37(2): e3112, 2021 03.
Article in English | MEDLINE | ID: covidwho-1384129

ABSTRACT

Angiotensin II (AngII), the effector peptide of the renin angiotensin system and has an important role in regulating cardiovascular hemodynamics and structure. AngII is an important biomarker for certain diseases that are associated with cardiovascular disorders, i.e., influenza, SARS-CoV-2, tumors, hypertension, etc. However, AngII presents in blood in very low concentrations and they are not stable due to their reactivity, therefore spontaneous detection of AngII is a big challenge. In this study, AngII-imprinted spongy columns (AngII-misc) synthesized for AngII detection from human serum, and characterized by surface area measurements (BET), swelling tests, scanning electron microscopy (SEM), FTIR studies. AngII binding studies were achieved from aqueous environment and maximum binding capacity was found as 0.667 mg/g. It was calculated that the AngII-miscs recognized AngII 8.27 and 14.25 times more selectively than competitor Angiotensin I and Vasopressin molecules. Newly produced AngII-misc binds 60.5 pg/g AngII from crude human serum selectively. It has a great potential for spontaneous detection of AngII from human serum for direct and critical measurements in serious diseases, that is, heart attacks, SARS-CoV-2, etc.


Subject(s)
Angiotensin II/blood , Molecularly Imprinted Polymers , Angiotensin II/isolation & purification , Biomarkers/blood , Humans , Protein Binding
7.
Front Immunol ; 12: 625732, 2021.
Article in English | MEDLINE | ID: covidwho-1291351

ABSTRACT

The etiological agent of COVID-19 SARS-CoV-2, is primarily a pulmonary-tropic coronavirus. Infection of alveolar pneumocytes by SARS-CoV-2 requires virus binding to the angiotensin I converting enzyme 2 (ACE2) monocarboxypeptidase. ACE2, present on the surface of many cell types, is known to be a regulator of blood pressure homeostasis through its ability to catalyze the proteolysis of Angiotensin II (Ang II) into Angiotensin-(1-7) [Ang-(1-7)]. We therefore hypothesized that SARS-CoV-2 could trigger variations of ACE2 expression and Ang II plasma concentration in SARS-CoV-2-infected patients. We report here, that circulating blood cells from COVID-19 patients express less ACE2 mRNA than cells from healthy volunteers. At the level of circulating cells, this ACE2 gene dysregulation mainly affects the monocytes, which also show a lower expression of membrane ACE2 protein. Moreover, soluble ACE2 (sACE2) plasma concentrations are lower in prolonged viral shedders than in healthy controls, while the concentration of sACE2 returns to normal levels in short viral shedders. In the plasma of prolonged viral shedders, we also found higher concentrations of Ang II and angiotensin I (Ang I). On the other hand, the plasma levels of Ang-(1-7) remains almost stable in prolonged viral shedders but seems insufficient to prevent the adverse effects of Ang II accumulation. Altogether, these data evidence that the SARS-CoV-2 may affect the expression of blood pressure regulators with possible harmful consequences on COVID-19 outcome.


Subject(s)
Angiotensin II/blood , Angiotensin I/blood , Angiotensin-Converting Enzyme 2/blood , COVID-19/blood , Peptide Fragments/blood , Adult , Angiotensin-Converting Enzyme 2/genetics , COVID-19/virology , Female , Gene Expression Profiling , HLA-DR Antigens , Humans , Lipopolysaccharide Receptors , Male , Middle Aged , Monocytes/immunology , Monocytes/metabolism , Pilot Projects , Prospective Studies , RNA, Messenger , Virus Shedding
8.
Am J Physiol Lung Cell Mol Physiol ; 321(1): L213-L218, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1234311

ABSTRACT

The renin-angiotensin system (RAS) is fundamental to COVID-19 pathobiology, due to the interaction between the SARS-CoV-2 virus and the angiotensin-converting enzyme 2 (ACE2) coreceptor for cellular entry. The prevailing hypothesis is that SARS-CoV-2-ACE2 interactions lead to an imbalance of the RAS, favoring proinflammatory angiotensin II (ANG II)-related signaling at the expense of the anti-inflammatory ANG-(1-7)-mediated alternative pathway. Indeed, multiple clinical trials targeting this pathway in COVID-19 are underway. Therefore, precise measurement of circulating RAS components is critical to understand the interplay of the RAS on COVID-19 outcomes. Multiple challenges exist in measuring the RAS in COVID-19, including improper patient controls, ex vivo degradation and low concentrations of angiotensins, and unvalidated laboratory assays. Here, we conducted a prospective pilot study to enroll 33 patients with moderate and severe COVID-19 and physiologically matched COVID-19-negative controls to quantify the circulating RAS. Our enrollment strategy led to physiological matching of COVID-19-negative and COVID-19-positive moderate hypoxic respiratory failure cohorts, in contrast to the severe COVID-19 cohort, which had increased severity of illness, prolonged intensive care unit (ICU) stay, and increased mortality. Circulating ANG II and ANG-(1-7) levels were measured in the low picomolar (pM) range. We found no significant differences in circulating RAS peptides or peptidases between these three cohorts. The combined moderate and severe COVID-19-positive cohorts demonstrated a mild reduction in ACE activity compared with COVID-19-negative controls (2.2 ± 0.9 × 105 vs. 2.9 ± 0.8 × 105 RFU/mL, P = 0.03). These methods may be useful in designing larger studies to physiologically match patients and quantify the RAS in COVID-19 RAS augmenting clinical trials.


Subject(s)
Angiotensin II/blood , Angiotensin I/blood , Angiotensin-Converting Enzyme 2/blood , COVID-19/blood , Peptide Fragments/blood , Renin-Angiotensin System , Respiratory Insufficiency/blood , SARS-CoV-2/metabolism , Adult , Aged , COVID-19/pathology , COVID-19/physiopathology , Female , Humans , Male , Middle Aged , Pilot Projects , Respiratory Insufficiency/pathology , Respiratory Insufficiency/physiopathology
9.
Am J Hypertens ; 34(3): 278-281, 2021 04 02.
Article in English | MEDLINE | ID: covidwho-1169620

ABSTRACT

BACKGROUND: The role of the renin-angiotensin-aldosterone system (RAAS) in coronavirus disease 2019 (COVID-19) is controversially discussed. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters host cells by binding to angiotensin-converting enzyme 2 (ACE2) and activity of the RAAS may affect susceptibility to SARS-CoV-2 infection and outcome of patients with COVID-19. METHODS: In this prospective single-center study, we determined the serum levels of ACE2, angiotensin II, and aldosterone in patients with COVID-19 compared with control patients presenting with similar symptoms in the emergency unit. RESULTS: We analyzed serum samples from 24 SARS-CoV-2 positive and 61 SARS-CoV-2 negative patients. SARS-CoV-2 positive and control patients did not differ in baseline patients characteristics, symptoms, and clinical presentation. Mean serum concentrations of ACE2, angiotensin II, and aldosterone did not differ between the SARS-CoV-2 positive and the control group. In line with this, serum potassium as surrogate parameter for RAAS activity and blood pressure were similar in both groups. CONCLUSIONS: In summary, we did not find evidence for altered RAAS activity including angiotensin II, aldosterone, or potassium levels, and blood pressure in patients with COVID-19. CLINICAL TRIALS REGISTRATION: Trial Number DRKS00021206.


Subject(s)
Aldosterone/blood , Angiotensin II/blood , Angiotensin-Converting Enzyme 2/blood , COVID-19 , Hypertension , Potassium/blood , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Blood Pressure Determination/statistics & numerical data , COVID-19/blood , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/physiopathology , Female , Germany/epidemiology , Humans , Hypertension/blood , Hypertension/drug therapy , Hypertension/epidemiology , Hypertension/physiopathology , Male , Middle Aged , Outcome Assessment, Health Care , Prospective Studies , Renin-Angiotensin System/physiology , SARS-CoV-2/isolation & purification
11.
Crit Care Med ; 49(6): e613-e623, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1101890

ABSTRACT

OBJECTIVES: We aimed to determine serum angiotensin II levels in patients with coronavirus disease 2019 infection and to investigate the effect of these levels on the prognosis of the disease. DESIGN: The study was planned prospectively and observationally. SETTING: The study was conducted in a tertiary university hospital. PATIENTS: Coronavirus disease 2019 patients older than 18 years old, polymerase chain reaction test positive, with signs of pneumonia on tomography, and hospitalized were included in the study. ICU need, development of acute respiratory distress syndrome, and in-hospital mortality were considered as primary endpoints. INTERVENTIONS: Blood samples were taken from patients three times for angiotensin II levels. MEASUREMENTS AND MAIN RESULTS: Angiotensin II levels were studied by enzyme-linked immunosorbent assay method. The SPSS 24.0 program (Statistics Program for Social Scientists, SPSS, Chicago, IL) was used to analyze the data. A total of 112 patients were included in the study, of which 63.4% of the patients were men. The serum angiotensin II levels were statistically significantly lower in the patients with coronavirus disease 2019 compared with the healthy control group (p < 0.001). There was no statistical significance between the serum angiotensin II levels measured at three different times (p > 0.05). The serum angiotensin II levels of the patients with acute respiratory distress syndrome were found to be statistically significantly lower than those without acute respiratory distress syndrome in three samples collected at different clinical periods (p < 0.05). The angiotensin II levels of the patients who required admission to the ICU at all three times of blood sample collection were found to be statistically significantly lower than those who did not (p < 0.05). Although the serum angiotensin II levels of the patients who died were low, there was no statistically significant difference in mortality at all three times (p > 0.05). CONCLUSIONS: The serum angiotensin II levels decrease significantly in patients with coronavirus disease 2019, and this decrease is correlated with lung damage.


Subject(s)
Angiotensin II/blood , Biomarkers/blood , COVID-19/blood , COVID-19/diagnosis , Prognosis , Sensitivity and Specificity
12.
Eur J Endocrinol ; 184(4): 543-552, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1067456

ABSTRACT

OBJECTIVE: While evidence on the interface between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the renin-angiotensin-aldosterone-system (RAAS) is accumulating, clinical data on RAAS peptide alteration among coronavirus disease-19 (COVID-19) patients is missing. DESIGN AND METHODS: In this exploratory study, we prospectively included adult patients (aged ≥ 18 years) admitted between February 26 and April 30, 2020 to a tertiary care hospital in Switzerland. We assessed the association of an underlying SARS-CoV-2 infection and equilibrium serum levels of RAAS peptides in hospitalized COVID-19 patients 1:1 propensity-score matched with patients suffering from SARS-CoV-2-negative respiratory infections. Subgroup analyses involved stratification for taking RAAS inhibitors. RESULTS: COVID-19 patients had about 50% lower equilibrium serum RAAS peptide levels as compared with matched controls (angiotensin I: 31.6 vs 66.8 pmol/L, -52.7% (95%CI: -68.5% to -36.9%); angiotensin II: 37.7 vs 92.5 pmol/L, -59.2% (95%CI: -72.1% to -46.3%); angiotensin (1-5): 3.3 vs 6.6 pmol/L, -49.7% (95%CI: -59.2% to -40.2%); angiotensin (1-7): 4.8 vs 7.6 pmol/L, -64.9% (95%CI: -84.5% to -45.3%)). While the plasma renin activity was lower in COVID-19 patients (88.6 vs 207.9 pmol/L, -58.5% (95%CI: -71.4% to -45.6%)), there was no difference of angiotensin-converting enzyme (ACE) and ACE2 plasma activity between the groups. Subgroup analyses revealed a pronounced RAAS peptide profile depression in COVID-19 patients among those not on RAAS inhibitors. CONCLUSIONS: As compared with SARS-CoV-2-negative patients, we found a downregulated RAAS in presence of a SARS-CoV-2 infection. Whether the lower levels of the protective angiotensin (1-5) and (1-7) are linked to adverse outcomes in COVID-19 warrants further investigation.


Subject(s)
Angiotensin II/blood , Angiotensin I/blood , Angiotensin-Converting Enzyme 2/blood , COVID-19/blood , Peptide Fragments/blood , Peptidyl-Dipeptidase A/blood , Renin/blood , Adrenergic beta-Antagonists/therapeutic use , Aged , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Case-Control Studies , Female , Humans , Male , Middle Aged , Prospective Studies , Renin-Angiotensin System , SARS-CoV-2
15.
Front Immunol ; 11: 1472, 2020.
Article in English | MEDLINE | ID: covidwho-643141

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 has spread rapidly around the globe. However, despite its high pathogenicity and transmissibility, the severity of the associated disease, COVID-19, varies widely. While the prognosis is favorable in most patients, critical illness, manifested by respiratory distress, thromboembolism, shock, and multi-organ failure, has been reported in about 5% of cases. Several studies have associated poor COVID-19 outcomes with the exhaustion of natural killer cells and cytotoxic T cells, lymphopenia, and elevated serum levels of D-dimer. In this article, we propose a common pathophysiological denominator for these negative prognostic markers, endogenous, angiotensin II toxicity. We hypothesize that, like in avian influenza, the outlook of COVID-19 is negatively correlated with the intracellular accumulation of angiotensin II promoted by the viral blockade of its degrading enzyme receptors. In this model, upregulated angiotensin II causes premature vascular senescence, leading to dysfunctional coagulation, and immunity. We further hypothesize that angiotensin II blockers and immune checkpoint inhibitors may be salutary for COVID-19 patients with critical illness by reversing both the clotting and immune defects (Graphical Abstract).


Subject(s)
Angiotensin II/blood , Betacoronavirus/metabolism , Coronavirus Infections/blood , Coronavirus Infections/physiopathology , Pneumonia, Viral/blood , Pneumonia, Viral/physiopathology , Up-Regulation , Age Factors , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme 2 , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Brain/immunology , Brain/metabolism , COVID-19 , Cellular Senescence/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Critical Illness , Cytokines/metabolism , Dopamine/metabolism , Down-Regulation , Humans , Immunotherapy/methods , Mitochondria/metabolism , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Prognosis , Renin-Angiotensin System/immunology , SARS-CoV-2
16.
J Mol Cell Cardiol ; 145: 84-87, 2020 08.
Article in English | MEDLINE | ID: covidwho-602090

ABSTRACT

We believe that, in parallel to the attempts for direct blockade of the SARS-CoV-2 penetration into host cell and repurposing drugs, finding new therapeutic strategies for patients with lung injury or cardiovascular complications/coagulopathies associated with COVID-19 should be paid particular attention. Apelin or its receptor agonists are of great potential treatment for COVID-19 through suppressing angiotensin-converting enzyme (ACE) and angiotensin II (Ang-II) production, as well as, down-regulating angiotensin receptor 1 (AT1R) and ACE2 up-regulation. These drugs have potential to improve acute lung injury and cardiovascular/coagulopathy complications in COVID-19 which are associated with elevated Ang-II/Ang(1-7) ratio.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Apelin Receptors/therapeutic use , Apelin/therapeutic use , Betacoronavirus/metabolism , Coronavirus Infections/drug therapy , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/drug therapy , Angiotensin I/metabolism , Angiotensin II/biosynthesis , Angiotensin II/blood , Angiotensin-Converting Enzyme 2 , Animals , Apelin/metabolism , Apelin Receptors/agonists , Apelin Receptors/metabolism , COVID-19 , Coronavirus Infections/virology , Drug Repositioning/methods , Humans , Mice , Pandemics , Peptide Fragments/metabolism , Pneumonia, Viral/virology , Receptor, Angiotensin, Type 1/metabolism , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/immunology , SARS-CoV-2 , COVID-19 Drug Treatment
17.
Gen Physiol Biophys ; 39(3): 203-204, 2020 May.
Article in English | MEDLINE | ID: covidwho-595142

ABSTRACT

Renin-angiotensin system (RAS) inhibition supposedly increases the expression of angiotensin converting enzyme 2, serving as a binding site for SARS-CoV-2. Concerns arose regarding therapy with RAS inhibition during the COVID-19 pandemic. However, the pharmacological restraining the classical RAS axis might be beneficial due to the reduction of deleterious effects of angiotensin II and enhancement of the anti-inflammatory angiotensin 1-7 pathway. Unless large controlled studies are performed, RAS inhibition remains the cornerstone therapy in populations with cardiovascular disorders.


Subject(s)
Cardiovascular Diseases/drug therapy , Coronavirus Infections/complications , Pneumonia, Viral/complications , Renin-Angiotensin System , Angiotensin II/blood , Angiotensin II Type 1 Receptor Blockers/therapeutic use , Angiotensin-Converting Enzyme 2 , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , COVID-19 , Cardiovascular Diseases/complications , Coronavirus Infections/drug therapy , Humans , Pandemics , Peptidyl-Dipeptidase A , Pneumonia, Viral/drug therapy , SARS-CoV-2 , Virus Internalization/drug effects
20.
Sci China Life Sci ; 63(3): 364-374, 2020 03.
Article in English | MEDLINE | ID: covidwho-693

ABSTRACT

The outbreak of the 2019-nCoV infection began in December 2019 in Wuhan, Hubei province, and rapidly spread to many provinces in China as well as other countries. Here we report the epidemiological, clinical, laboratory, and radiological characteristics, as well as potential biomarkers for predicting disease severity in 2019-nCoV-infected patients in Shenzhen, China. All 12 cases of the 2019-nCoV-infected patients developed pneumonia and half of them developed acute respiratory distress syndrome (ARDS). The most common laboratory abnormalities were hypoalbuminemia, lymphopenia, decreased percentage of lymphocytes (LYM) and neutrophils (NEU), elevated C-reactive protein (CRP) and lactate dehydrogenase (LDH), and decreased CD8 count. The viral load of 2019-nCoV detected from patient respiratory tracts was positively linked to lung disease severity. ALB, LYM, LYM (%), LDH, NEU (%), and CRP were highly correlated to the acute lung injury. Age, viral load, lung injury score, and blood biochemistry indexes, albumin (ALB), CRP, LDH, LYM (%), LYM, and NEU (%), may be predictors of disease severity. Moreover, the Angiotensin II level in the plasma sample from 2019-nCoV infected patients was markedly elevated and linearly associated to viral load and lung injury. Our results suggest a number of potential diagnosis biomarkers and angiotensin receptor blocker (ARB) drugs for potential repurposing treatment of 2019-nCoV infection.


Subject(s)
Angiotensin II/blood , Betacoronavirus/pathogenicity , Biomarkers/blood , Coronavirus Infections/diagnosis , Lung Injury , Pneumonia, Viral/etiology , Respiratory Distress Syndrome/etiology , Viral Load , Adult , Aged , Blood Chemical Analysis , COVID-19 , Child , Coronavirus Infections/complications , Coronavirus Infections/pathology , Humans , Male , Middle Aged , Pneumonia, Viral/complications , Pneumonia, Viral/diagnosis , Pneumonia, Viral/pathology , SARS-CoV-2 , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL